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A Semi-Implicit Method for the Analysis of Two-Dimensional
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Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This

study proposes a semi-implicit filling algorithm using VOF in which the PUC (Piecewise

Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor

-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream

function is proposed to find the velocity of the node that newly enters the computational

domain. The effect of wall boundary conditions on the flow field and temperature field is

examined by numerically solving a two-dimensional casting process.
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Nomenclature ----------­
Ai : Area of the j-th face

Cp : Specific heat

Ctu) : Convection matrix
D.(k) : Divergence of element

f : Volume fraction of element

F : Force matrix
h : Heat transfer coefficient

H : Pressure gradient matrix

h. : Pressure gradient matrix of element

h/ : Divergence operator of element

K : Diffusion matrix

k : Thermal conductivity

M : Mass matrix

m, : Mass matrix of element

P : Pressure

T : Temperature

u, u, : Velocity vector and its component
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v; : Volume of the i-th element

Greek Letters
f..l : Viscosity
p : Density

(Jij : Viscous stress tensor

lJf : Stream function

Superscripts
T : Transpose

n : Time step
(k) : Iteration number

Subscripts
e : Element

i : Cell number

inlet: Inlet

J : Face number

1. Introduction

Viscous flow with moving free surfaces poses a

moving boundary problem where the domain has

an unknown boundary which has to be deter-
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P (Ui+ UjUi) = - P.i+ (jij,j+ Ii (1)
U4i=Q (2)

2. Incompressible Fluid Flow and
Fractional Step Method

where (jij=/J.(U4j+Uj,i) and p is the density. u,
and P are the velocity and the pressure, respec­
tively. i. is the body force. The energy conservat­

ion equation is also included in the governing

equations.

(4)

(5)
T=Tir llet

q=h(T-T",)

2.1 Governing equations and fractional step

method

The governing equations for laminar incom­
pressible Newtonian fluids are the continuity

equation and the unsteady Navier-Stokes equa­

tions described as follows;

where h is the convection heat transfer coefficient

and Tilliet and Too denote the inlet and surround­
ing temperature, respectively.

Chorin (1968) first proposed a fractional step

method on the finite difference framework and
Donea et al. (1982), Ramaswamy (1988), Ramas­

wamy and Jue (1992), and De Sampaio (1991)

Here, T is the temperature and Cp and k are the

specific heat and the thermal conductivity of the

fluid, respectively. The thermal boundary condi­
tion for the above equation may be the essential

condition or the convection heat transfer condi­

tion;

free-slip condition, and the slip condition with

shear stress depending on the relative magnitude

of the boundary layer thickness and mesh size.

However, due to the restricted power of com­

puters, many researchers have applied the shear­

stress boundary condition on a relatively coarse

grid. To demonstrate the effects of the wall

boundary conditions on the overall calculation

results, this study compares the calculation results

from the case of applying the no-slip boundary

condition and the slip boundary condition with

shear stress.

mined as a part of the solution procedure. Identi­

fication and treatment of this problem are impor­

tant in many technological applications such as

casting of metal, injection molding of plastics,

glass forming processes, formation of micro

droplets, and so on. The great difficulty in

treating this problem is due to continuous change

of the domain and the physical discontinuity of

the interface. The available approaches to the

moving boundary problem can be categorized in

general as Lagrangian, Eulerian, and ALE (Ar­

bitrary Lagrangian-Eulerian). In the Lagrangian

method, the coordinate system moves with the

same velocity as the fluid, and as a result, the

material interfaces can be precisely followed and
the boundary conditions on the interface can be

applied with accuracy. However, the flow with

large deformation and complex geometry may

cause distortion and tangling of the mesh. In that

case, rezoning or reconnection of the distorted

mesh is inevitable. The Eulerian methods are

characterized by the fixed coordinate system
through which the fluid moves. Using the fixed

grid system, it is easy to efficiently deal with flow

that undergoes large motion and to extend two

-dimensional codes to three-dimension. On the
other hand, a special scheme is necessary to

accurately locate the interface without loss of

sharp discontinuity, because the interface does

not coincide with the grid points but moves
through them. Frequently used methods include

VOF (Volume of Fluid) method (Hirt and

Nichols, 1981), MAC (Marker And Cell) meth­
od (Harlow and Welch, 1965), SUC (Simple

Line Interface Calculation) method (Noh and

Woodward, 1976), and Young's method (Young,

1982). Considering the efficiency of calculations

and the availability in complex flows, VOF

method is adopted in this study and a semi-im­
plicit front-advancing algorithm is proposed.

In the analysis of non-isothermal flow with

free boundary, the velocity boundary conditions

at the solid wall directly affect the development of

both velocity and thermal boundary layers, large­
ly affecting the overall accuracy of the calcula­

tion. Among the common forms of wall boundary
conditions, there are the no-slip condition, the
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applied the method on the finite element

framework. Mizukami and Tsuchiya (1984),

Kawahara and Ohmiya (1985) and Nakayama

and Mori (1996) studied the flow with moving

free surfaces using the fractional step method.

This method takes the fractional step approach to

the numerical time integration of the unsteady

Navier-Stokes equations so that only the conti­

nuity equation and the pressure terms are treated

in an implicit manner. Then, the intermediate

velocity which satisfies only the momentum

equation and does not necessarily meet the conti­

nuity constraint, is adjusted by the pressure to

meet the divergence-free condition. This reflects

the dual role of pressure; one is the pressure force

in the momentum equation, and the other is an
implicit one that enforces the divergence-free

constraint in incompressible flow.

2.2 Explicit element-by-element fractional
step method

Nakayama and Mori (1996) proposed the

explicit element-by-element fractional step meth­

od and Kim et al. (2000 a, b) applied it in

analyzing mold filling processes and the sloshing

problems. The semi-discretized momentum equa­

tions and the continuity equation can be written

as

Pen+l,(k+l) =Pen+1,(k) +Ap/+1,(k) (9)

iJp/+l,(k) = - )..,De(k) (10)

Ae Ve (11)
~theTme Ihe

u/+1,(k+l)=u
e
n+ 1,(k)+~tnme-lhe~p/+l,(k) (12)

where the superscripts (n +I) and (k) denote the

time step and the iteration number, respectively.
De(k) is the local divergence of element and Ve is

the volume of the element. he and me-1 are the

element matrix of Hand M-r, respectively. This

study applies the constraint of mass conservation

not on the global mesh but on each element. That
is, the steps of pressure correction (Eq. (9» and

velocity correction (Eq. (12» are performed for

each element until the divergence of each element
De(k) is within the convergence criterion.

This study adopts the consistent streamline

upwind/Petrov-Galerkin (SUPG) formulation

(Brooks and Hughes, 1982) as the upwind

scheme. This formulation adds a streamline up­

wind perturbation (or diffusion) to the weighting

function that acts only in the flow direction. The

modified weighting function is applied to all
terms in the momentum equations.

3. Analysis of Flow with Free Surfaces
Using a Fixed Coordinate System

M1i+C(u)u+Ku-Hp-F=O (6)

h/ue=O (d=l, 2, 3, "', NE) (7)

where u and p are the nodal velocity and pressure

vectors, respectively. M, C(u). K and H are the

mass, convection, diffusion and pressure gradient

matrix. Also, F is the force vector, heT is the

divergence matrix of the element and NE is the
number of elements. In this formulation, a

bilinear shape function is applied for the velocity

variable and an element-wise constant shape

function for the pressure variable. In the time­

integration of the semi-discretized Navier-Stokes

equations, an explicit scheme is employed except

for the pressure force term. Subsequently, the
implicit fractional-step time-integration for the

pressure leads to the following equations;

This equation has only the advection term, so

the solution by direct discretization is apt to cause

severe numerical smearing of the flow front. To

circumvent this problem, the donor-acceptor

method was proposed by Ramshaw and Trapp

(1976). Recently, Rider and Kothe (1998),

Harvie and Fletcher (2000), and Gueyffier et al.

(1999) proposed a scheme to advance the flow

3.1 VOF method
VOF method was first developed by Hirt and

Nichols (1981) and is the representative algo­

rithm for solving flows with moving free surfaces
on a fixed coordinate system. The volume of fluid

I is defined as the volume fraction of a fluid in an
element. Movement of the interface is represented

by the following transport equation of I :

(13)al +V'. (u/) =0at

(8)D (kl __l_h T
U

n+l,(k)
e -V

e
e e



A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces 723

(19)

j-th face rj

it normal
ector, n

r

where fij and Vij represent the volume-of-fluid

and the volume of the element adjacent to the

j-th face of the z-th element, respectively. Also,

n, is the outward unit vector normal to the
element boundary [j and a, is the ratio of the j-th

face area to the total peripheral area of the i-th

element. The orientation vector is determined
by averaging the volume-of-fluid of the neigh­

boring elements and is a unit vector indicating

(b)

Fig. 1 Definition sketches: (a) the definition of the
wet-out fraction !r,; (b) the wet-out fraction
!r,n+1/2 used in the semi-implicit scheme

3.3 Determination of the wet-out fraction

fr,
The algorithm to calculate the wet-out frac­

tions frjn and frjn+' from the distribution of f"
and r: is based on the baby-cell method of Kim

et al. (2000a), which utilizes the PUC-type rep­
resentation of the free surface within elements.

The orientation vector r is defined inside an

element as

element i

accuracy is raised to the second order with respect

to time.

(a)

(18)

(15)

(17)

(16)

( 14)Oft Vi+!(u'n)fdr=o
r

3.2 Semi-implicit VOF method

The coupling between the VOF field and the

velocity field makes the problem fully implicit in

nature. In this study, however, those fields are

decoupled and the explicit scheme is applied.

Integration of Eq. (13) for the control volume
results in

front using the geometric and lagrangian aspects

of the VOF transport equation. Also, Harvie and

Fletcher (2001) used the stream function in
updating the flow field.

where the subscripts i and j represent the cell and

the face number, respectively. A j is the area of the

j-th face, Alet is the wetted area of A j (see Fig.
I (ar), and the wet-out fraction fr, is defined as
the ratio of the two. As in Fig. I (b), fn+' is the f

distribution after advection of i" with velocity
u n+1

. Also, frjn+' and frt are the wet-out

fractions based on fn+' and f" distributions,

respectively. The calculation time used in the
semi-implicit update (Eqs. (16) - (17)) of the

flow front is about twice the time used in the
explicit one (Eq. (15)). However, the portion of

the calculation time used in the advancement of
the flow front is relatively very small, so the load

added to the overall calculation by the semi­

implicit scheme is minimal. Furthermore, the

and

where T denotes the boundary of the domain.

Then, application of the explicit method and the

Crank-Nicolson method in time integration

yields

tr+1=fN ~ [- t(un'n) fr,nAj]

It">frt ~ [ - t(un
+1/2'n)fr,n+1I2Aj]

=r+~l[- ~ (untuM1)'n fr,nt fr,ni' A]
'V; j 2 2'

fr·=trt~[-t(un+l'n)fr,nAj]
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element i

centroid

1J.... _--......... -
.. ~

orientation
vector r

(a)

element i
~ orientation vector

Fig. 2 Schematic representation of orientation
vectors at the free surface elements

the direction where fluid is abundant, as shown in

Fig. 2. The orientation vector is utilized to deter­

mine the wet-out fraction in the following man­

ner:
(I) A plane, which is normal to the orienta­

tion vector r, and passed through the centroid of

an element, is generated (see Fig. 3 (ai ).

(2) Each element is discretized by baby-cells

with equal area (see Fig. 3 (bj ).

(3) Baby-cells are filled up in a sequence be­

ginning with a cell which is the farthest from the

plane in the positive direction of the orientation

vector, r. Then, wet-out fractions of the element
can be calculated (see Fig. 3 (c)).

tttttt1=tt=t-=~~baby-cell

(b)

element i

approximated
.L--l--\--l-H;;t'"

free surface

\ wet-out
~fr . {'\ action rr,

(c)

where b, is the speed of the wall and n, denotes

the normal vector to the wall. a, is the shear stress

at the wall and the shear stress function f (Ut)

is based on the analytic solution of the external
flow on a flat plate. Proper choice of the wall

boundary condition is taken by considering the
relative magnitude of the boundary layer thick­

ness and mesh size at the wall (Gao, 1999). If the

3.4 Wall boundary conditions

Commonly used boundary conditions

wall can be classified as follows;

no-slip condition u.> b,
slip condition uini=O, (Jt =0

shear stress condition: uini=O,

a,= f (Ut) =0.5 pu/ X0.664/JReD

on the

(20)

(2I)

(22)

Fig. 3 Illustration of the procedure to calculate the
wet-out fraction at the element boundary: (a)
construct a line normal to r; (b) discretize the
element i by the baby-cells; (c) fill up the
baby-cells and calculate the wet-out fraction.

boundary layer thickness is much smaller than

the mesh size at the wall, the slip boundary

condition is acceptable. If the mesh size is much

smaller than the boundary layer thickness, the

no-slip boundary condition is proper, and if

the two have an equal order of magnitude, the

shear-stress boundary condition is recommen­

dable. Most researchers (Lewis et al., 1995; Dhatt

et aI., 1990; Usmani et aI., 1992; Hetu and Ilinica,

1999; Gao, 1999) have applied shear stress
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nodes in the computational domain
o at the previous time

• nodes which newly comes into
the computational domain

Fig. 4 Specification of the velocity value at the node
which enters the computational domain at the
new time step

(24)

(25)

x

The horizontal
position of the

ow front

The gate is removed at t=0+

~ ¢" = - UZ.l +Ul.2

_ a¢" _ a1jl
Ul- aXe' U2-- aXl

y

T
H

Fig. 5 Illustration of the broken dam problem

4. Results and Discussions

4.1 Verification of the code for the broken
dam problem

The developed code was verified through a
broken dam problem. Because both the advancing

and retreating movement of the free surface can

be examined in a simple geometric configuration,

the broken dam problem has been a representa­
tive benchmark test for flows with moving free

surfaces. As in Fig. 5, the water is contained

between the wall and the gate, and with removal

of the gate, the water column collapses under

the effect of gravity as time proceeds. The density
is 1000kg/m3

, the viscosity I X 10-3 Pa-s, the

gravity acceleration 9.8Im/s2 and the height H
is taken as 0.05 175m. The numerical mesh is

equi-spaced. The slip condition is specified as
the boundary condition on the wall. Table 1 and

The advantage of this scheme is that it satisfies

the mass conservation equation more accurately.

However, as a result of the fact that the stream

function does not exist in the three-dimensional

problem, this method is difficult to apply to the

three-dimensional cases. In three-dimensional

calculations, the streamline, not the stream func­

tion, can be introduced to obtain the velocity, but

the larger error in divergence would obstruct

practical application.

1

(23)unewnOde

where ue and Ve are the average velocity and the

volume of element, respectively. However, one of

disadvantages of this method is that it does not

guarantee the divergence-free condition. This

study uses the stream function ¢" that exists in two
-dimensional incompressible flow. The stream

function calculated by Eq. (24) is extrapolated to

obtain the velocity using Eq. (25).

3.5 Specification of velocity at the node that
newly enters the computational domain

In the calculation of flows with moving free

surfaces using a fixed grid system, only the

elements of which VOF is greater than 0.5 'J>
0.5) are included in the calculation domain.

Hence, when a node newly enters the calculation

domain, the old-value velocity of the node is

necessary (see Fig. 4). Kim et al. (2000a) and

Nakayama and Mori (1996) used the volume­

averaged velocity of the neighboring nodes as

follows;

boundary conditions and some have employed the

no-slip boundary condition (Shin and Lee, 1997,

2000). In addition, Kim et al. (2000b) applied a

body force equivalent to the shear stress. To study

the effect of wall boundary condition, the no-slip

boundary condition and the shear-stress boun­

dary condition was used at the mold wall.
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Table 1 Simulation results of the broken dam problem for different schemes

Front advancing Scheme u7feUI1lOde
Number of

Mesh
Time Step

Case A 30* 12
Kim et a1. (2000 a) : A veraging of

273
explicit scheme

I
neighboring nodes

CaseB 30* 12
This Study: Extrapolation of

186
semi-implicit scheme stream function

Case C 48* 19
Kim et a1. (2000 a) A veraging of

662
explicit scheme neighboring nodes

CaseD 48* 19
This Study: Extrapolation of

326
semi-implicit scheme stream function

6D

3D

Eq.(21}or Eq.(22}

q = h(T -T~}

(a)

au =0, v=O
ay

aT =0
ay0_._._._._.-._'-'..

Initial fluiddomain

U =l.SU(l-(y/ D)')

v=o

?'
:'"

I-'
'5'"

0.8 1.2 1.6
t'

o Martin& Moyce[Experiment, 1952]
Case A
cases
CaseC
CaseD

3
I
I

2.5 !
i

x·
2-

;

I
1.5~

I
I

1
0

Fig. 6 Comparison of the free surface position by
the numerical calculation with the experimen­
tal data (Martin and Moyce, 1952) and Kim
et al. (2oooa) for the broken dam problem

Fig. 6 compare the calculation results with the

experiments of Martin and Moyce (1952) and the

numerical analysis of Kim et a1. (2000a). Here,

t*=tj(g/H) and x*=x/H represent the di­

mensionless time and the position of the flow

front. The result shows about the same degree of

accuracy as previous studies. It should be noted

that this study applies the velocity calculated from

extrapolation of the stream function, while previ­

ous studies (Kim et a1. 20ooa) used the mean­

value velocity for the node that newly enters the

computational domain as in Eq. (23). On that

account, the horizontal location of the flow front

in this study has a slightly bigger value around

t" =0.5, but the overall results show good agree­

ment between the two schemes.

(b)

Fig. 7 Definition sketch and finite element mesh
used in the analysis of mold filling process:
(a) geometry and boundary conditions; (b)
finite element mesh

4.2 Effect of wall boundary conditions on
the analysis of mold mling process

The mold filling process was analyzed to study

the effect of wall boundary condition on the

velocity and temperature field. The semi-implicit

scheme was adopted to advance the flow front.

The geometry and boundary conditions of this

comparative study are shown in Fig. 7. At the

inlet, the fluid is taken to have a parabolic veloc-
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. .t. :

:J., .
, ,."

. ,_ ...

. . ..- ..
, _'0"_, ... ;1 ....

y

f_._._. Magnified in Fig. 9(b)

width of the inlet was taken as O.lm. The number

of nodes is 764 and the number of elements is

705. Calculations are made for four cases with

different boundary conditions at the wall, which

are summarized in the Table 2.

As shown in Figs. 8 and 10, the no-slip

boundary condition on the wall causes jetting of

the fluid along the bottom wall. Furthermore, at

the left and right sides of the upper wall arises a

secondary flow (Fig. 9), and consequently the

temperature field is also affected by the secondary

flow. The secondary flow is assumed to occur

when the flow front first reaches the middle

of the wall, not the corner, as a result of the jetting

flow. The velocity profile at the wall makes it

clear that the mesh is inappropriate to resolve the
unewnode Wall boundary

TmJn("C)
condition

Case I
A veraging of No-slip

630.1
neighboring nodes condition

Case 2
Extrapolation of No-slip

629.9
stream function condition

Case 3
A veraging of Shear stress

596.7
neighboring nodes condition

Case 4
Extrapolation of Shear stress

596.9
stream function condition

Table 2 Minimum temperature at the end of mold
filling calculated for different wall boun­
dary conditions and schemes

ity profile. The density and viscosity of the fluid

was taken as lOOOkg/m3 and I Pa-s, respectively.

The specific heat was 900l/kg' K and the thermal

conductivity was taken as 200W/m·K. The

thermal boundary conditions required to solve

Eq. (3) are Eqs. (4) - (5). The heat transfer

coefficient was 1000W/m2
• K. The surrounding

temperature Too and the inlet temperature T in 1et

was taken as 25"C and 700"C, respectively. The

average velocity at the inlet was lm/s and a half

Case 1
Case 2
case 3
case 4 0.3

:::::::,-,-:::: :;: = - -= ;:
a.'

(a)

0.28
/

(a) y /'

. -~='--~=:'='::::::"::-'~~.,

. \
'\

il
i-----l.-J.!...... -.-u

0.26 -r >:>
/ -:/~

x
(b)

(b)

Fig. 8 Results of numerical calculation for the mold
filling process. Comparison of the free surface
position for the four cases: (a) t=7s; (b) t=
lOs.

Fig. 9 Results of numerical calculation for the mold
filling process: (a) overall flow pattern for
Case 2 at t= 12s; (b) magnified flow pattern
in the upper left corner. Secondary flow is
visible
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development of the boundary layer at the wall by

using the no-slip boundary condition. The thick­

ness of the boundary layer for the case with the

no-slip wall boundary condition on the coarse

grid system is much greater than the case with the

shear-stress wall boundary condition. Consider­

ing the fact that the mold filling process usually

comes to an end before the boundary layer fully

develops at the wall, the no-slip boundary condi­

tion is not acceptable except for the very fine grid

system. Cases 3 and 4 that applied the shear-stress

boundary condition show the faster advancing

flow fronts than those of Cases 1 and 2 that

adopted the no-slip boundary condition. Also,

the flow front of Case 2 and Case 4 slightly

exceeds that of Case 1 and Case 3, respectively.

This was to be expected since the velocity
unewnode, which was predicted by using the

extrapolation of the stream function, was slightly

bigger than that assumed by averaging the veloci­

ties of neighboring nodes.

As in Fig. 11, the temperature field is affected

by the velocity field. In Case 1 and Case 2, the

isothermal line is distorted along the stream line

I I It t r r

" r II, "1'
'" II

~
. ;: " " " "

...... ,\,... '\ '\ ,
'\ '\" \ \

, '\ '\ \ I

......... \ \ I

... '\ '\ \ II

.... ,,\ \ II

\ \ \ \ tl

\ \ \ \' \

, I I "'l

~ ~ ~ : : ~
, ~ I , I I I
.. ~ I I I I I

.-", II'"
, " , , I , , ,- , , .. , ""

, ",

- -- - -

- -- -:: - --..

=-- ­
/ - ­
/ - -

J I -' -

I I I I

~ ~ ~ '... ,

(b)

... \ \ \ \ " \

, I

I /

(a)

--~~~::::...... \ '\ \

-, , \ \ \ \- ... ... ... \ \ \ \ \ \

\ \ \ \ \ \ \

\ '\ \ \ \ II

I I I I I 11 i

I I I J I "
.... I If/II

.... I I I "

:::~~~~:~:
.... ~ .. ", , 11_ , "- ";,,

, , -- , - ...
- ~. ~ -. -. -.- - -- - - - - ------ -. - - ------------ --- - - ------------ - - --------- - - - -

, ........ ....
------------_ ......... --- -------------- -- - -------------- - - ----------- - - - - -

at the right and left corners of the upper wall

under the influence of the secondary flow, while

in Case 3 and Case 4, greater convective mixing

with the main stream around the inlet results in

=~~~%H "I
, \ \ \ r ,
\ ,\ \ I.

I' \ \ 11
I I I \I ,

, I 111111

"1 til,

=

----- ----- --

(a)

= =

, " III
~ " I I t

: : :: ; ... "" :::

(c)

I I I ".

I '

, \ -
~~~~~~~~~--~-:~~~~::. ------------- ---- ------------- - -- ------------- - - - ------------ - - -

- - "" \- " ,\ \.
............ , 'I.'" \.
... .... ... , , , " \ \ I

\ \ \ \ \\

I I III

1 I I I III

I I I 11111

I I I 111I
I I 111II
~ I r I I I t
, 111111- -- - -... - " ,.,.- ... " "".

(d)

(b)

Fig. 10 Results of numerical calculation for the
mold filling process. Velocity vectors and
free surface positions: (a) Case 1, t=7s; (b)
Case 4, t=7s

Fig. 11 Results of numerical calculation for the
mold filling process at t= 15s (final time).
Temperature field at an equal interval of
10·C from 600·C to 700·C: (a) Case 1;
(b) Case 2; (c) Case 3; (d) Case 4; (e) Case
5; (f) Case 6
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smoother contour lines. As can be seen in Table

2, the minimum temperature at the end of the

filling process clearly shows the effect of different

wall boundary conditions. The minimum tem­

peratures for Case 3 and Case 4 are lower than

those of Case 1 and Case 2. This is the result of

the larger convective heat transfer caused by the

slip condition at the mold wall.

The minimum mesh size at the wall in this

problem is 0.0058m, and the boundary layer

thickness is 83:0.0577m based on the analytic

solution of the laminar flow on the flat plate

when fully developed. However, the developing

flow is supposed to have a much thinner boun­

dary layer. Hence, for the analysis of mold filling

problems, the no-slip boundary condition are not

always guaranteed to give better results than the

shear-stress boundary condition even when the

mesh is a little fine.

5. Conclusions

In this paper, a volume-tracking algorithm

based on the VOF method is presented for the

analysis of the flow with moving free surfaces.

This study proposed a semi-implicit scheme to

advance the flow front. For ease of satisfying the

divergence-free constraint, the stream function

was adopted to designate the velocity of the nodes

which were newly incorporated into the com­

putational domain. Comparative studies were

conducted for several problems to demonstrate

the accuracy and characteristics of the proposed

algorithm. Close agreement with other numerical

results and experimental data was obtained.

To examine the effect of wall boundary condi­

tions on the flow with moving free surface, a com­

parative study was performed on the mold filling

process for different conditions. The minimum

temperatures in case that applied shear-stress

boundary condition were lower than those of no­

slip boundary condition, which was caused by the

larger convective heat transfer at the mold wall.
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